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Abstract

The averaging method was improved by using the Jacobian elliptic sine (sn), cosine (cn) and delta (dn) functions as

generating solutions in order to obtain a highly accurate periodic solution for a strongly nonlinear dynamical system. The

proposed method can be applied to a relatively general nonlinear system based on the single degree-of-freedom Duffing

equation. Two methods of stability analysis were applied and evaluated for the approximate solutions obtained by the

proposed method. The approximate solutions obtained by the proposed method for practical examples were compared to

the solutions obtained by the shooting method. The results confirmed that the proposed method provides a more accurate

solution and more accurate stability analysis results than those obtained by the conventional averaging method that uses

trigonometric functions as the generating solution.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The averaging method originally proposed by Krylov–Bogoliubov [1] is commonly used in the theoretical
analysis of weak nonlinear dynamical systems because it has several methodological advantages. These
advantages include a relatively straightforward computation procedure that analytically obtains both the
periodic and transient solutions. This method can also be applied to a comparatively wide variety of nonlinear
dynamical systems. The conventional averaging method, however, approximates the solution using only one
term of trigonometric function, so the accuracy of the approximate solution for strongly nonlinear dynamical
systems is poor. This is because the periodic solution of a nonlinear dynamical system contains many
harmonic components, and the influence of the higher order harmonic components increases as the
nonlinearity of the system becomes large. Therefore, it is important to investigate methods for improving the
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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analytical accuracy of the averaging method, even for strongly nonlinear dynamical systems, without
diminishing the method’s advantages.

Several methods have previously been proposed to improve the performance of the averaging method.
These methods can be classified into two groups based on a methodological point of view. The first group
includes secondary accuracy improvement methods [2] in which the higher harmonic components are
incrementally added to the first-order approximate solution. These types of methods, however, are impractical
because the computation procedures are very complicated.

The other group contains methods in which a more appropriate function, rather than a trigonometric
function, is utilized as the generating solution. For this purpose, the Jacobian elliptic function was typically
used. It is known that the Jacobian elliptic function is the exact solution for the undamped free vibration of a
Duffing equation and simple pendulum. There are several papers that improve the averaging method by
employing the Jacobian elliptic function as the generating solution for the following systems based on the
Duffing equation:

€xþ b1xþ b3x
3 ¼ �f , (1)

and simple pendulum:

€xþ p2 sin x ¼ �f , (2)

where b1, b3 and p are constants, e is a small constant, and f ¼ f 1ðx; _xÞ or f ¼ f 2ðx; _x; tÞ is the perturbed
function. It is believed that the Jacobian elliptic function was first utilized as the generating solution of the
averaging method by Barkham and Soudack [3]. They proposed the improved averaging method to solve an
autonomous system in the case of f ¼ f 1ðx; _xÞ with b140 and b340 in Eq. (1). Christopher [4] developed a
more accurate averaging method that employs the Jacobian elliptic function only for the case of f ðx; _xÞ ¼ _x
and b1,b3�(e/2)

240. Christopher and Brocklehurst [5] improved Christopher’s method [4] and extended the
range of applicability of this method. Yuste and Bejarano [6,7] showed that Christopher’s method [4] can be
extended to the oscillator of Eq. (1) with b140, b3o0 and b1o0, b340. Furthermore, Yusute and Bejarano
[8] introduced a general expression for the time derivative of the amplitude and phase similar to those obtained
by the conventional averaging method using a trigonometric function. Cap [9] devised an averaging method
using the Jacobian elliptic function for the pendulum-type oscillator defined by Eq. (2) that incorporates
various damping elements. Coppola and Rand [10] applied the averaging method using the Jacobian elliptic
function to the oscillator of Eq. (1) with f ¼ f 1ðx; _xÞ, and obtained the approximate solution of the limit cycle.

On the other hand, Roy [11] proposed an improved averaging method for a nonautonomous system defined
by Eqs. (1) and (2) with f ¼ f 2ðx; _x; tÞ. Roy developed the averaging method using the Jacobian elliptic
function to predict the steady-state solution in a harmonically excited strong nonlinear system. Hereafter, this
method is referred to as Roy’s method.

All of the above methods utilize the Jacobian elliptic function that expresses the exact solution of free
vibration for the systems defined by Eqs. (1) and (2) with e ¼ 0. In the case in which the Jacobian elliptic
function is used, the value of the modulus of elliptic integral must be determined. The modulus of elliptic
integral is the most basic and important parameter, exerting a significant influence on the accuracy of the
approximate solutions. In order to determine the value of the modulus, all of the previously mentioned
methods utilized the relationship among amplitude, frequency and modulus that holds only in the case of
undamped free vibration of Eqs. (1) and (2) with e ¼ 0 (see Section 2.3). However, the computational accuracy
cannot be markedly improved when this relationship is utilized. This is verified numerically in Section 5 by
comparing the computation accuracy of Roy’s method that utilizes this relationship with the very accurate
numerical solution obtained by the shooting method.

This paper introduces a new type of averaging method that uses the Jacobian elliptic function to obtain
highly accurate periodic solutions for strongly nonlinear oscillators based on a single degree-of-freedom
Duffing equation. In the proposed method, the Jacobian elliptic function is also used as the generating
solution, but the relationship obtained from undamped free vibration is not used to determine the modulus
of elliptic integral. Instead, a ‘‘pseudo-averaged equation’’ that incorporates the modulus as an unknown
variable is derived by a skillful computational procedure and an accurate approximate solution is obtained
from the equation.
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The newly proposed method is collectively referred to as the averaging method of elliptic type, and the
methods using the Jacobian elliptic cosine (cn), sine (sn) and delta (dn) functions are referred to as
the averaging method of cn, sn and dn types, respectively. In addition, two types of stability analysis for the
approximate solution obtained using the proposed method are also applied. The method’s validity is verified
by comparing the results obtained by applying the proposed method to typical nonlinear oscillators with the
very accurate numerical solutions computed by the shooting method [12].
2. Preparative discussions for formulation of the method

2.1. Fundamental equation

Consider the single degree-of-freedom system governed by the following dimensionless differential equation
with strong nonlinearity:

€xþ b1xþ b3x
3 ¼ �f ðot;x; _xÞ;

f ðot;x; _xÞ ¼ f ðotþ 2p;x; _xÞ; b1 ¼ �1; b3 ¼ �1; � ¼
d

dt
:

9=
; (3)

In mechanical systems, x,o and t represent the displacement, angular frequency of excitation and time,
respectively. e(0oe51) is a small parameter that expresses the magnitude of perturbed function f ðot;x; _xÞ,
which is a nonlinear function of x and _x and a periodic function with period 2p with respect to ot. When
e ¼ 0, Eq. (3) reduces to the undamped free vibration response of the Duffing equation. The Duffing equation
is a typical dynamic system that exhibits a strong and continuous nonlinearity. The exact solution to this
equation can be expressed by the Jacobian elliptic function. The Duffing equation is categorized into three
types depending on the combination of parameters b1 and b3. The groups are the hardening spring type when
(b1,b3) ¼ (1,1), the softening spring type when (b1,b3) ¼ (1, �1) and the snap-through spring type when
(b1,b3) ¼ (�1,1). This report addresses all three Duffing equation types.

In the following discussion, the highly accurate approximate solution for Eq. (3) with period 2p will be
calculated using a Jacobian elliptic function as the generating solution for the averaging method.
2.2. Differential formulae for the Jacobian elliptic function

The Jacobian elliptic functions sn(v, k), cn(v, k) and dn(v, k) are collectively expressed by ep(v, k) in the
following discussion, where k(0pko1) is the modulus of the Jacobian elliptic functions and integrals. The
partial differentiations of the Jacobian elliptic function with respect to v are given by

qepðv; kÞ
qv

¼ ep0ðv; kÞ ¼

sn0ðv; kÞ ¼ cnðv; kÞdnðv; kÞ;

cn0ðv; kÞ ¼ �snðv; kÞdnðv; kÞ;

dn0ðv; kÞ ¼ �k2snðv; kÞcnðv; kÞ;

8><
>: (4)

where ‘‘0’’ ¼ q/qv. In addition, the second partial differentiation of ep(v, k) with respect to v can be
expressed as

q2epðv; kÞ
qv2

¼ ep00ðv; kÞ ¼ 2r1ep
3ðv; kÞ þ r2epðv; kÞ, (5)

where r1 ¼ r1(k) and r2 ¼ r2(k) are both solely functions of modulus k and depend upon the type of Jacobian
elliptic functions ep(v, k) used. These values are provided in Table 1.

On the other hand, the partial differentiation of ep(v, k) with respect to the modulus k can be obtained from
the differential formulae [15] as

qepðv; kÞ
qk

¼
1

kl2
l2 �

E

K

� �
v� Zðv; kÞ

� �
ep0ðv; kÞ þ r1f1� ep2ðv; kÞgepðv; kÞ

� �
, (6)
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Table 1

Definition of ep0(v,k), r1(k), r2(k) and r3(k) depending on ep(v,k)

ep(v,k) ep0(v,k) r1(k) r2(k) r3(k)

sn(v,k) cn(v,k)dn(v,k) k2
�(k2+1) 0

cn(v,k) �sn(v,k)dn(v,k) �k2 2k2
�1 k2

dn(v,k) �k2 sn(v,k)cn(v,k) �1 �(k2�2) k2

Table 2

Exact solution of the undamped free vibration of the Duffing equation

b1 b3 Type of spring property Exact solution n

1 1 Hardening spring system Â cnðv̂; k̂Þ 2

1 �1 Softening spring system Â snðv̂; k̂Þ 2

�1 1
Snap-through spring system

full-swing mode

half-swing mode

(
Â cnðv̂; k̂Þ 2

Âdnðv̂; k̂Þ 1
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where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
is the complementary modulus, Z(v, k) the Jacobian zeta function, and K ¼ K(k) and

E ¼ E(k) the complete elliptic integrals of the first and second kinds, respectively. In addition, the partial
differentiation of ep0(v, k) with respect to k can be derived from Eqs. (4)–(6) as

q ep0ðv; kÞ
qk

¼
1

kl2
l2 �

E

K

� �
v� Zðv; kÞ

� �
f2r1 ep

3ðv; kÞ þ r2 epðv; kÞg
�

�f2r1 ep
2ðv; kÞ þ r3gep

0ðv; kÞ
	
. (7)

The definition of r3 ¼ r3(k) in this equation is also provided in Table 1.
2.3. Exact solution of the undamped free vibration of the Duffing equation

When e ¼ 0, Eq. (3) becomes

€xþ b1xþ b3x
3 ¼ 0. (8)

Eq. (8) represents the undamped free vibration of the Duffing equation. The exact solution can be obtained
analytically using the Jacobian elliptic functions [13,14], as shown in Table 2, except for the (b1,b3) ¼ (�1,�1)
case, which has no vibrating solution. The (b1,b3) ¼ (�1,1) case, which is the snap-through spring system case,
contains two types of exact solutions. These solutions are based on the three spring equilibrium points, x ¼ 0
(unstable) and x ¼71 (stable). The symmetrical waveform solution given by the cn function is called the full-
swing mode because the three equilibrium points all fall within the range of vibration. The asymmetrical
waveform solution given by the dn function is called the half-swing mode because it vibrates around only one
of the stable equilibrium points, x ¼71.

The exact solution of Eq. (8) can be expressed using the following collective Jacobian elliptic function
expression:

x̂ðtÞ ¼ Â epðv̂; k̂Þ; v̂ ¼ âðôtþ ŷÞ; â ¼ âðk̂Þ ¼
nKðk̂Þ

p
. (9)

In this equation, Â, ô, ŷ and k̂ are the amplitude, the nonlinear natural angular frequency, the phase angle
and the modulus, respectively. The number n is equal to either 1 or 2, depending on the type of Jacobian
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elliptic function used, as shown in Table 2. The phase angle ŷ can be regarded as an arbitrary real number
without a loss of generality.

The following equation is derived by substituting x̂ðtÞ of Eq. (9) into x of Eq. (8) and combining the result
with the relationship in Eq. (5):

ðâ2ô2r2 þ b1ÞÂ epðv̂; k̂Þ þ ð2â2ô2r1 þ b3Â
2
ÞÂ ep3ðv̂; k̂Þ ¼ 0. (10)

The coefficients epðv̂; k̂Þ and ep3ðv̂; k̂Þ are then set to zero. This gives the equations that determine the
relationship between Â, ô and k̂ as follows:

â2ô2r̂2 þ b1 ¼ 0; 2â2ô2r̂1 þ b3Â
2
¼ 0. (11)

3. Averaging method of elliptic type

3.1. Approximate solution assumption for a perturbed system

In order to derive a highly accurate approximate solution for the perturbed system described by Eq. (3),
the Jacobian elliptic functions that correspond to the exact solution of the unperturbed system described by
Eq. (8) are employed as the generating solution of the averaging method. As a result, Eq. (9) can be used to
derive the approximate solution for the perturbed system as follows:

xðtÞ ¼ A epðv; kÞ; _xðtÞ ¼ Aao ep0ðv; kÞ; (12)

where

v ¼ au; u ¼ otþ y; a ¼ aðkÞ ¼
nKðkÞ

p
. (13)

In these equations, the unknown variables are the amplitude A ¼ A(t), the phase angle y ¼ y(t) and the
modulus k ¼ k(t), which are all assumed to be slowly varying functions with respect to time t. In steady-state
vibration, A,y and k become constants. In this case, the period of the steady-state vibration becomes 2p/o with
respect to t, 2p with respect to u and 4K with respect to v.

In order to simplify the equations, the Jacobian elliptic function ep(v, k) and the zeta function Z(v, k) are
hereafter represented by ep and Z, respectively.
3.2. Differential operator with respect to time

Since the differentiation of K with respect to k is given by

dK

dk
¼

1

k

E

l2
� K

� �
, (14)

the differentiation of v ¼ au ¼ nK(ot+y)/p with respect to t becomes

_v ¼
n

p

_k

k

E

l2
� K

� �
uþ Kðoþ _yÞ

( )
. (15)

The following differential operator with respect to time t is derived using Eq. (15) and by considering the
fact that A, y and k are all the functions of t:

d

dt
¼ _A

q
qA
þ _k

q
qk
þ

n

p

_k

k

E

l2
� K

� �
uþ Kðoþ _yÞ

( )
q
qv

. (16)



ARTICLE IN PRESS
T. Okabe, T. Kondou / Journal of Sound and Vibration 320 (2009) 339–364344
3.3. Derivation of the pseudo-averaged equations

Differentiating the first equation of Eq. (12) with respect to t by applying Eqs. (6) and (16) yields

_x ¼ _A epþ Aaðoþ _yÞep0 þ _k
A

kl2
j1, (17)

where

j1 ¼ �Z ep0 þ r1ðep� ep3Þ. (18)

Comparing the second equation of Eq. (12) with Eq. (17) leads to

_A epþ _yAa ep0 þ _k
A

kl2
j1 ¼ 0. (19)

Next, differentiating the second equation of Eq. (12) with respect to t by applying Eqs. (5), (7) and (16)
yields

€x ¼ _Aao ep0 þ Aa2oðoþ _yÞj2 þ
_k

Aao

kl2
j3, (20)

where

j2 ¼ epð2r1 ep
2 þ r2Þ;

j3 ¼
E

K
� l2 � r3

� �
ep0 � 2r1 ep

2ep0 � Zj2:

9>=
>; (21)

Substituting Eqs. (12) and (20) into Eq. (3) leads to

_Aao ep0 þ _yAa2oj2 þ
_k

Aaoj3

kl2
¼ �f ðu� y; A ep; Aaoep0Þ � Z, (22)

where

Z ¼ ða2o2r2 þ b1ÞA epþ ð2a2o2r1 þ b3A2ÞA ep3. (23)

As e-0, the values of A and k approach those of Â and k̂, respectively, from Eq. (11). Therefore, when
e is small, the coefficients of A ep and A ep3 in Eq. (23) become small values. As a result, Z defined by Eq. (23)
and the right-hand side of Eq. (22) become small values. If the magnitudes of j _Aj, j_yj and j _kj are all small, the
left-hand side of Eq. (22) also becomes a small value. Therefore, in the following discussions, it is assumed that
the magnitudes of j _Aj, j_yj and j _kj are all small. Then, A, y and k can be regarded as slowly varying functions
with respect to time t and can be averaged over one period in the same way as the conventional averaging
method.

The averaged equations with respect to A, y and k must be derived from Eqs. (19) and (22). However, the
fact that the number of unknown variables is larger than the number of equations creates a serious problem.
To overcome this obstacle, the first three equations are obtained by eliminating _A, _y and _k from Eqs. (19) and
(22) individually. These three equations are then averaged over one period (0–2p) with respect to u. This
technique for deriving the averaged equations is the key point in the formulation of the averaging method of
elliptic type.

During the time averaging procedure, unknown variables A, y and k are assumed to be constants, since they
are the slowly varying functions with respect to time. The property that allows the Jacobian elliptic functions,
j1, j2 and j3 to be expanded into the Fourier series [15] as shown in Table 3 is also utilized.

Hereafter, the variables marked with ‘‘–’’ denote averaged values. Therefore, K̄ ¼ Kðk̄Þ, Ē ¼ Eðk̄Þ,
ā ¼ aðk̄Þ ¼ nK̄=p.

First, eliminating _A from Eqs. (19) and (22) yields the following equation:

_yAa2ðj2 ep� ep0
2
Þ þ Ao2a2j2 epþ b1A ep2 þ b3A3 ep4 ¼ �f ðu� ȳ; Āep; Āāo ep0Þep (24)
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Table 3

Fundamental forms of Fourier series of Jacobian elliptic functions, j1, j2 and j3

Functions Fourier series

sn,sncn,sndn Sm sin[(2m+1)nu/2]

cn,cndn Cm cos[(2m+1)nu/2]

dn Cm cos(mnu)

Z Sm sin[(m+1)u]

j1,j2 Sm sin½ð2mþ 1Þnu=2

Cm cos½ð2mþ 1Þnu=2�

)
ep ¼ cn [ dnj3

j1,j2 Cm cos½ð2mþ 1Þnu=2�

Sm sin½ð2mþ 1Þnu=2�

)
ep ¼ snj3

Cm and Sm(m ¼ 0,1,2,y) are mth order cosine and sine Fourier coefficient of the corresponding function. The definition of n is in Table 2.
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By averaging Eq. (24) over one period with respect to u and by using the relationship shown in Table 3
and the orthogonality between cosine and sine functions, the following approximate averaged equation is
derived:

_̄yĀoC̄1 þ Āo2C̄2 þ b1ĀC̄3 þ b3Ā
3C̄4 ¼ �H̄1, (25)

where

C̄1 ¼ C1ðk̄Þ ¼ ā2
R 2p
0 ðj2ep� ep02Þdu; C̄2 ¼ C2ðk̄Þ ¼ ā2

R 2p
0 j2 ep du;

C̄3 ¼ C3ðk̄Þ ¼
R 2p
0 ep2du; C̄4 ¼ C4ðk̄Þ ¼

R 2p
0 ep4 du;

H̄1 ¼ H1ðĀ; ȳ; k̄Þ ¼
R 2p
0 f ðu� ȳ; Ā ep; Āāo ep0Þep du:

9>>>=
>>>;

(26)

Next, the equation derived by eliminating _y from Eqs. (19) and (22) is averaged, yielding

_̄AoC̄5 þ
_̄k ĀoC̄6 ¼ �H̄2, (27)

where

C̄5 ¼ C5ðk̄Þ ¼
1

ā
C̄1; C̄6 ¼ C6ðk̄Þ ¼

ā

k̄l2
R 2p
0
ðj1j2 � j3ep

0Þdu;

H̄2 ¼ H2ðĀ; ȳ; k̄Þ ¼ �
R 2p
0 f ðu� ȳ; Ā ep; Āāo ep0Þep0 du:

9>=
>; (28)

Finally, the equation derived by eliminating _k from Eqs. (19) and (22) is averaged, resulting in

_̄yĀoC̄7 þ Āo2C̄8 þ b1ĀC̄9 þ b3Ā
3C̄10 ¼ �H̄3, (29)

where

C̄7 ¼ C7ðk̄Þ ¼ āk̄l̄
2
C̄6; C̄8 ¼ C8ðk̄Þ ¼ ā2

R 2p
0 j1j2 du;

C̄9 ¼ C9ðk̄Þ ¼
R 2p
0

j1 ep du; C̄10 ¼ C̄10ðk̄Þ ¼
R 2p
0

j1 ep
3 du;

H̄3 ¼ H3ðĀ; ȳ; k̄Þ ¼
R 2p
0 f ðu� ȳ; Ā ep; Āāo ep0Þj1 du:

9>>>=
>>>;

(30)

The results for H̄1, H̄2 and H̄3 in Eqs. (25), (27) and (29) change depending on the form of the perturbed
function f ðot; x; _xÞ. On the other hand, Ci (i ¼ 1,2,y,10) are independent of f ðot;x; _xÞ and are only functions
of k̄. They can be calculated analytically depending on the type of elliptic function, as presented below.
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(i)
 In the case of ep ¼ cn:

C̄1 ¼
16K̄

2

3pk̄
2
ð1� 2k̄

2
Þ
Ē

K̄
� l̄

2
� �

; C̄2 ¼
C̄1

2
; C̄3 ¼

2p

k̄
2

Ē

K̄
� l̄

2
� �

;

C̄4 ¼
2p

3k̄
4

2ð2k̄
2
� 1Þ

Ē

K̄
þ ð2� 3k̄

2
Þl̄
2

� �
; C̄5 ¼

1

ā
C̄1; C̄6 ¼

4K̄

3k̄
3
l̄
2
ð1� 2k̄

2
Þ
Ē

2

K̄
2
� 4l̄

2Ē

K̄
þ 3l̄

2

( )
;

C̄7 ¼ āk̄ l̄
2
C̄6; C̄8 ¼

C̄7

2
; C̄9 ¼ �

p

k̄
2

Ē
2

K̄
2
� l̄

2

 !
; C̄10 ¼

p

3k̄
4
ð1� 2k̄

2
Þ
Ē

2

K̄
2
þ 2l̄

2Ē

K̄
� 3l̄

4

( )
:

9>>>>>>>>>>=
>>>>>>>>>>;
(31)
(ii)
 In the case of ep ¼ sn:

C̄1 ¼
16K̄

2

3pk̄
2
�ð1þ k̄

2
Þ
Ē

K̄
þ l̄

2
� �

; C̄2 ¼
C̄1

2
; C̄3 ¼ �

2p

k̄
2

Ē

K̄
� 1

� �
;

C̄4 ¼ �
2p

3k̄
4

2ð1þ k̄
2
Þ
Ē

K̄
� ð2þ k̄

2
Þ

� �
; C̄5 ¼

1

ā
C̄1;

C̄6 ¼ �
4K̄

3k̄
3
l̄
2
ð1þ k̄

2
Þ
Ē

2

K̄
2
� 4l̄

2Ē

K̄
þ 3l̄

4

( )
;

C̄7 ¼ āk̄ l̄
2
C̄6; C̄8 ¼

C̄7

2
; C̄9 ¼

p

k̄
2

Ē
2

K̄
2
� l̄

2

 !
;

C̄10 ¼
p

3k̄
4
ð1þ k̄

2
Þ
Ē

2

K̄
2
þ 2l̄

2Ē

K̄
� 3l̄

2

( )
:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

(32)
(iii)
 In the case of ep ¼ dn:

C̄1 ¼
4K̄

2

3p
ðk̄

2
� 2Þ

Ē

K̄
þ 2l̄

2
� �

; C̄2 ¼
C̄1

2
; C̄3 ¼ 2p

Ē

K̄
;

C̄4 ¼
2p
3

2ð2� k̄
2
Þ
Ē

K̄
� l̄

2
� �

; C̄5 ¼
1

ā
C̄1; C̄6 ¼ �

2K̄

3k̄ l̄
2
ð2� k̄

2
Þ
Ē

2

K̄
2
� 2l̄

2
ð2þ k̄

2
Þ
Ē

K̄
þ l̄

2
ð2þ k̄

2
Þ

( )
;

C̄7 ¼ āk̄ l̄
2
C̄6; C̄8 ¼

C̄7

2
; C̄9 ¼ �p

Ē
2

K̄
2
� 2l̄

2Ē

K̄
þ l̄

2

( )
; C̄10 ¼

p
3
ðk̄

2
� 2Þ

Ē
2

K̄
2
þ 4l̄

4Ē

K̄
� 2l̄

4

( )
:

9>>>>>>>>>>=
>>>>>>>>>>;
(33)
It should be noted that the averaged equations (25), (27) and (29) are derived approximately by applying the
skillful procedure to Eqs. (19) and (22). Therefore, Eqs. (25), (27) and (29) are called ‘‘pseudo-averaged

equations.’’
3.4. Computation of the periodic solution

The periodic solution of Eq. (3) can be obtained by setting _̄A ¼ _̄y ¼ _̄k ¼ 0 in Eqs. (25), (27) and (29). That
is, Ā, ȳ and k̄ in the periodic solution are calculated as the roots of the following equations:

GðȳÞ ¼ 0, (34)
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where

G ¼

G1ðĀ; ȳ; k̄Þ

G2ðĀ; ȳ; k̄Þ

G3ðĀ; ȳ; k̄Þ

0
B@

1
CA ¼

Āo2C̄2 þ b1ĀC̄3 þ b3Ā
3
C̄4 � �H̄1

�H̄2

Āo2C̄8 þ b1ĀC̄9 þ b3Ā
3C̄10 � �H̄3

0
BB@

1
CCA; ȳ ¼

Ā

ȳ

k̄

0
B@

1
CA. (35)

Eq. (34) is a system of nonlinear algebraic equations with respect to Ā, ȳ and k̄. When Eq. (34) is solved by
the Newton–Raphson method, the procedure of successive approximation is expressed by

ȳnþ1 ¼ ȳn �
qGðȳnÞ

qȳ

� ��1
GðȳnÞ. (36)

If det½qG=qȳ�a0 in the neighborhood of the solution of Eq. (34), Eq. (36) can be solved successfully. It has
been numerically verified that det½qG=qȳ� is not equal to zero for many typical nonlinear oscillators.
3.5. Relationship with the conventional averaging method

In this section, we consider the case where the generating solution of the averaging method is assumed to be
cn or sn. When k ¼ 0, the following relationships hold:

cnðu; 0Þ ¼ cos u; snðu; 0Þ ¼ sin u; dnðu; 0Þ ¼ 1;

Zðu; 0Þ ¼ 0; Kð0Þ ¼ Eð0Þ ¼ p=2:

)
(37)

Therefore, as k-0, the generating solution approaches the following trigonometric functions:

x ¼ A cos ot; _x ¼ �Ao sin ot ðfor ep ¼ cnÞ;

x ¼ A sin ot; _x ¼ Ao cos ot ðfor ep ¼ snÞ;

)
(38)

Eq. (38) is identical to the generating solution assumed by the conventional averaging method. K, E and E/K
can be expanded into power series with respect to k as

K ¼
p
2

1þ
1

4
k2
þ

9

64
k4
þ oðk6

Þ

� �
;

E ¼
p
2

1�
1

4
k2
�

3

64
k4
þ oðk6

Þ

� �
;

E

K
¼ 1�

1

2
k2
�

1

16
k4
þ oðk6

Þ:

9>>>>>>>=
>>>>>>>;

(39)

When the limit of k ð¼ k̄Þ ! 0 is applied to Eqs. (38) and (39), the first and second row of Eq. (34) become

ðb1 � o2ÞĀþ
3

4
b3Ā

3
¼
�

p

R 2p
0 f ðu� ȳ; Ā cos u;�Āo sin uÞ cos udu;R 2p

0 f ðu� ȳ; Ā cos u;�Āo sin uÞ sin udu ¼ 0

9>=
>; ðfor ep ¼ cnÞ, (40)

ðb1 � o2ÞĀþ
3

4
b3Ā

3
¼
�

p

R 2p
0

f ðu� ȳ; Ā sin u; Āo cos uÞ sin udu;R 2p
0

f ðu� ȳ; Ā sin u; Āo cos uÞ cos udu ¼ 0

9>=
>; ðfor ep ¼ snÞ. (41)

Eqs. (40) and (41) are indistinguishable from the equations used by the conventional averaging method to
determine the approximate solution. And since C̄8, C̄9, C̄10 and H̄3! 0 as k̄! 0, the third row of Eq. (34)
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always holds at k̄ ¼ 0. Therefore, that the averaging method of cn and sn types are rational generalizations of
the conventional averaging method.
3.6. Ineffective application

In the next case, the perturbed function f ðot;x; _xÞ contains even powers with respect to x.

f ðxÞ ¼ x2n ðn ¼ 1; 2; 3; . . .Þ. (42)

When ep ¼ cn or ep ¼ sn, H̄1, H̄2 and H̄3 become

H̄1 ¼ Ā
2n R 2p

0 ep2nþ1 du ¼ 0;

H̄2 ¼ �Ā
2n R 2p

0 ep2nep0 du ¼ 0;

H̄3 ¼ Ā
2n R 2p

0 ep2nf�Z ep0 þ r1ðep� ep3Þgdu ¼ 0:

9>>>=
>>>;

(43)

This result indicates that the even ordered terms x2n do not affect the approximate solution. This can be
attributed to the unconformity between the exact solution and the cn or sn generating solutions. That is, the
exact solution can be expressed by a Fourier series containing both even and odd orders, but the Fourier series
for the cn and sn contain only odd order terms. Therefore, the accuracy of the averaging method of cn and sn
types cannot be improved for systems containing even order terms x2n. When a spring function of a system has
a quadratic term x2 and this term exerts a serious influence on its vibration characteristics, the exact solution
x ¼ B�A sn2 (A and B: constants) of undamped free vibration for the quadratic oscillator €xþ 1þ x2 ¼ 0 can
be used as the generation solution of elliptic averaging method. This result will be detailed in a subsequent
report.
4. Stability analysis

Because the averaging method of elliptic type obtains both stable and unable solutions, it is necessary to
evaluate their stability. In this section, two methods of stability analysis are applied to the approximate
solutions obtained from the proposed method.
4.1. Method using the variational equation of the fundamental equation

The variational equation of Eq. (3) is expressed in the normal form as

d

dt

x1
x2

" #
¼

0 1

�b1 � 3b3x2 þ �
qf

qx
�
qf

q _x

2
4

3
5 x1

x2

" #
. (44)

In this equation, x1 ¼ x and x2 ¼ _x, where x denotes a small variation of x. When x is a periodic solution,
Eq. (44) becomes a system of linear ordinary differential equations with periodic coefficients. The stability of
the zero solution of Eq. (44), and consequently, the stability of the periodic solution of Eq. (3) can be
determined from the two eigenvalues of the state transition matrix, i.e., the characteristic multipliers of
Eq. (44). If the absolute values of the two characteristic multipliers are both less than one, then the periodic
solution x is stable. If one or more of the characteristic multipliers are greater than one, then the solution is
unstable.

This type of method, which is based on Floquet’s theorem, is typically used for the stability analysis of
periodic solutions in nonlinear systems because of the very high accuracy in evaluating the stability. On the
other hand, a numerical integration technique, such as the Runge-Kutta-Gill (RKG) method, must be
employed to compute the state transition matrix because it cannot be obtained analytically. Therefore, this
method requires a relatively large computational effort.
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4.2. Method using the variational equation of the averaging equation

Denoting small variations of Ā, ȳ and k̄ by dA, dy and dk, the variational equations of averaging equations
(25), (27) and (29) with respect to Ā, ȳ and k̄ are provided as

oĀC̄1d_y ¼ X̄ 11dAþ X̄ 12dyþ X̄ 13dk;

oC̄5d _Aþ oĀC̄6d _k ¼ X̄ 21dAþ X̄ 22dyþ X̄ 23dk;

oĀC̄7d_y ¼ X̄ 31dAþ X̄ 32dyþ X̄ 33dk;

9>=
>; (45)

where

X̄ 11 ¼ �
qH̄1

qĀ
� o2C̄2 � b1C̄3 � 3b3Ā

2
C̄4; X̄ 12 ¼ �

qH̄1

qȳ
;

X̄ 13 ¼ �
qH̄1

qk̄
� o2Ā

dC̄2

dk̄
� b1Ā

dC̄3

dk̄
� b3Ā

3dC̄4

dk̄
; X̄ 21 ¼ �

qH̄2

qĀ
; X̄ 22 ¼ �

qH̄2

qȳ
;

X̄ 23 ¼ �
qH̄2

qk̄
; X̄ 31 ¼ �

qH̄3

qĀ
� o2C̄8 � b1C̄9 � 3b3Ā

2
C̄10; X̄ 32 ¼ �

qH̄3

qȳ
;

X̄ 33 ¼ �
qH̄3

qk̄
� o2Ā

dC̄8

dk̄
� b1Ā

dC̄9

dk̄
� b1Ā

3dC̄10

dk̄
:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(46)

In this section, the symbols marked with ‘‘–’’ represent the values corresponding to the periodic solution.
The solution of Eq. (45) is expressed using the constants d ~A, d~y, d ~k and the characteristic root l, which
dominates the stability of the solution, as follows:

dA ¼ d ~A elt; dy ¼ d~y elt; dk ¼ d ~k elt. (47)

The characteristic root l can be determined by substituting Eq. (47) into Eq. (45) and applying the existence
condition for the nontrivial solutions of d ~A, d~y and d ~k:

det

X̄ 11 X̄ 12 � loĀC̄1 X̄ 13

X̄ 21 � lo C̄5 X̄ 22 X̄ 23 � loĀC̄6

X̄ 31 X̄ 32 � loĀC̄7 X̄ 33

2
64

3
75 ¼ 0 (48)

Eq. (48) is a quadratic equation with respect to l. The stability of the periodic solution can be evaluated by
determining l from Eq. (48). If the real parts of the two characteristic roots are both negative, then the
periodic solution is stable. If at least one of them is positive, then it is unstable.

This type of method is easy to understand and requires only a small computational effort. For these reasons,
it is frequently used for the stability analysis of periodic solutions obtained by the averaging method. On the
other hand, the accuracy of the stability analysis is poor because this method may not obtain the secondary
unstable regions, as shown in the following numerical examples.

5. Computational results and discussion

5.1. Numerical calculation conditions

The validity of the proposed method is verified by applying the method to several nonlinear oscillators. The
accuracy of the computational results is then compared with that obtained by the shooting method [11] and
the conventional averaging method. The numerical integral in the shooting method is performed by the RKG
method and the step size for the RKG method is set to 2p/1024. The numerical solution obtained by the
shooting method is very accurate and can be regarded as the correct solution. The thick and the thin lines in
the following figures represent the approximate solutions calculated by the proposed method (x) and the
conventional averaging method (xt), respectively. The solid and broken lines represent the stable and unstable
solutions, respectively, and the symbols&, n and , denote the boundary between stable and unstable regions
for saddle-node, pitchfork and Hopf bifurcations, respectively. The accurate numerical solutions xs obtained
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by the shooting method are depicted using J for a stable solution andK for an unstable solution, in addition
to the thin lines. The dot-dashed line represents the exact solution of undamped free vibration.

When the perturbed function f ðot;x; _xÞ can be defined by a simple function, H̄1, H̄2 and H̄3 in Eq. (25)–(30)
can be calculated analytically using the Fourier series expansion of the Jacobian elliptic function, called the
q-expansion [15]. However, it is difficult to calculate H̄1, H̄2 and H̄3 analytically for arbitrary f ðot;x; _xÞ.
Instead, numerical integration is employed. H̄1, H̄2 and H̄3 in the following calculations are computed using
Simpson’s rule, a well-known numerical integration method. In addition, it is also difficult to calculate the
Jacobian matrix elements that are needed to solve Eq. (34) using the Newton–Raphson method and the partial
derivatives with respect to Ā, ȳ and k̄ in the determinant of Eq. (46) analytically. Therefore, a numerical
difference is employed for these calculations. By adopting these numerical calculation techniques, a program
with a wide range of applicability can be developed.

The stability of the periodic solution obtained by the proposed method is determined using the stability
criterion defined by the variational equation of the fundamental equation discussed in Section 4.1. The
stability of the periodic solution obtained by the conventional averaging method is determined from a similar
procedure described in Section 4.2, which determines the behavior of the amplitude and phase angle after
small disturbances.

5.2. Averaging method of cn type for a Duffing oscillator with hardening spring

Although the proposed method can be applied to a variety of systems containing a complex perturbed
function, this section applied the method to a Duffing equation with a hard spring (b1 ¼ b3 ¼ 1) in order
to verify the validity of the proposed method in detail for the most fundamental model of a nonlinear
system. The perturbed function f ðot; x; _xÞ of a forced and damped Duffing oscillator can be generally
expressed as

f ðot; x; _xÞ ¼ F cos ot� c _x, (49)

where F and o are the amplitude and angular frequency of the external force, respectively, and c is the viscous
damping coefficient. The parameters in Eq. (49) were set to F ¼ 1.0, c ¼ 0.02 and e ¼ 1.0. The steady-state
solution for a Duffing oscillator with hardening spring is calculated using the averaging method of cn type.

The frequency responses of the amplitude are shown in Fig. 1 in order to display the overall frequency
response characteristics and computational accuracy of the approximate solutions obtained by the proposed
and conventional averaging methods. The figure reveals that the main resonance of the approximate solutions
obtained by the proposed method coincides with the numerical solutions obtained by the shooting method. On
the other hand, the frequency response curves obtained by the conventional averaging method are
quantitatively different from those for the shooting method.

This paper examines the characteristics of the two types of stability analysis discussed in Section 4, that is,
one is the method by using the variational equation of the fundamental equation (method I) and the other by
using the variational equation of the averaging equation (method II). The vertical tangents of the frequency
response curves can be determined by both stability criteria as the boundaries between the stable and unstable
regions caused by saddle-node bifurcations. Fig. 2 provides a detailed view of the frequency response curve
in the low frequency region (o ¼ 0.35–0.8), which is the left flank of the main resonance. The pitchfork
bifurcation point calculated by the shooting method is located at (op, xp) ¼ (0.6905,0.9523) and
(op, xp) ¼ (0.7407,0.9716). The solution becomes locally unstable in the region between the two pitchfork
bifurcation points and the other solution which represents the higher harmonic resonance of second-order
bifurcates and generate from these points. When the method I is employed for the averaging method of cn
type, two pitchfork bifurcation points appear at (op, xp) ¼ (0.6906,0.9536) and (op, xp) ¼ (0.7404,0.9723). The
locations of the two boundary points and stability characteristics obtained by the method I nearly correspond
with those determined by the shooting method, both qualitatively and quantitatively. On the other hand, when
the method II is employed, the approximate solutions for the entire region in the left flank of the main
resonance are judged to be stable. This result means that the method II cannot accurately determine the
stability of the previously mentioned secondary unstable region. The accuracy of stability analysis is strongly
dependent upon the accuracy of the approximate solution. Because the averaging method of cn type provides
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a highly accurate approximate solution, the method I also becomes highly accurate. As a result, method I is
recommended for subsequent stability analyses in order to take advantage of the highly accurate solutions
obtained by the proposed method.
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Fig. 2 depicts the higher harmonic resonance of third-order calculated by the shooting method. Neither the
proposed method nor the conventional method is capable of calculating the higher harmonic resonance of
third-order.

Fig. 3 shows the frequency response of the phase angle. The phase angles obtained by the proposed method
agree well with those determined by shooting method.

Next, the accuracy of the approximate solution x obtained by the averaging method of cn type is
quantitatively verified by comparing with the numerical solution xs obtained by the shooting method. The
proposed method is favorable because it is capable of calculating the higher harmonic components of the
solution x. Therefore, the accuracy is estimated by the relative error of the maximum amplitude Emax and the
root mean square error Erms defined as

Emax ¼
A� xs;max

xs;max










, (50)

Erms ¼
1

2p

Z 2p

0

ðx� xsÞ
2du

� �1=2
¼

ffiffiffi
1

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n¼1;3;5;...

fðan � as;nÞ
2
þ ðbn � bs;nÞ

2
g

s
, (51)

where xs,max denote the maximum amplitudes of xs, as,n and bs,n, which are the nth-order Fourier cosine and
sine coefficients of xs that are calculated using an FFT. These nth-order Fourier cosine and sine coefficients of
x are calculated using Fourier series equations of the Jacobian elliptic functions as follows:

xðtÞ ¼
P

n¼1;3;5;...
An cos nðotþ ȳÞ ¼

P
n¼1;3;5;...

½an cos notþ bn sin not�;

An ¼
2pĀ

k̄K̄

q̄n=2

1þ q̄n
; an ¼ An cos nȳ; bn ¼ An sin nȳ; q̄ ¼ exp �

L̄

K̄

� �
; L̄ ¼ Kðl̄Þ:

9>>>=
>>>;

(52)
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Figs. 4 and 5 display the relative error Emax and the root mean square error Erms. The similar errors Emax

and Erms calculated for the conventional averaging method results are represented by the thin line in Figs. 4
and 5. These figures reveal that the accuracy of the proposed method’s approximate solution is considerably
improved over that for the conventional averaging method. In one region of Fig. 4, the response curve
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resembles a sharp valley. At this point the maximum amplitudes calculated by the proposed method and the
shooting method coincide with each other and Emax becomes zero. However, since the Erms value for this point
is not zero, the correct solution has not been obtained.

Fig. 6 shows the frequency response curves for the fundamental amplitude and the higher harmonic
amplitudes of odd order from the third to ninth components. Both the fundamental and the higher harmonic
amplitudes obtained by the proposed method coincide well with those obtained by the shooting method.

The waveform and the phase portrait for the stable solutions on the left flank of the main resonance
(o ¼ 0.6) are shown in Fig. 7. The conventional averaging method waveform is clearly different from the
shooting method waveform due to the large deformation caused by higher harmonic components. On the
other hand, both the maximum amplitude and the delicate distortion of the waveform obtained by proposed
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method agree with the numerical solution to a high degree of accuracy. This can be attributed to the method’s
ability to provide good approximations for higher harmonic components.

Fig. 8 reveals the influence of the magnitude of e on the root mean square error Erms for the stable solution
at o ¼ 1.5. The accuracy of the solution obtained by the proposed method improves rightfully as the
magnitude of e decreases.

Next, the calculation results for the proposed method and Roy’s method [11] are compared for the case of a
Duffing oscillator with hardening spring, b1 ¼ b3 ¼ 0 in Eq. (3). Roy’s method is an averaging method that
transforms the original governing equation into two first-order autonomous equations governing the energy
and the phase variable. The form of the chosen transformation is given by unperturbed conservative orbits of
the system. The approximate solution of Roy’s method for a Duffing oscillator with hardening spring is
assumed by following the Jacobian elliptic function:

x � xðe; uÞ ¼ A cnðau; kÞ; y � yðe; uÞ ¼ _x ¼ �Aa snðau; kÞdnðau; kÞ, (53)
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where u ¼ t+constant. The relationship between amplitude A, modulus k, constant a and energy level e is

e ¼
1

2
A2 þ

1

4
A4; a2 ¼ A2 þ 1; k2

¼
A2

2ð1þ A2Þ
. (54)

Above relations are derived by the condition of an exact solution of undamped free vibration of a Duffing
oscillator with hardening spring. The equations for determining the unknown variables of Roy’s method is

cAar0 þ
F

2
a1 sin y ¼ 0;

pa

2K
� o� �

paF

4K

dA

de
c1 þ

2k2

A2l2
ðw1 � k2v1Þ

� �
cos y ¼ 0;

9>>>=
>>>;

(55)

where dA/de ¼ 1/(A+A3), y is phase angle and a1, c1, v1, w1 and r0 are the function of modulus k. r0 is the
average value of the function sn2 au dn2 au, a1, c1, v1 and w1 are the first Fourier coefficients of the functions
sn au dn au, cn au, sn2 au cn au and Z(au)sn au dn au, respectively. The analytical expressions of variables r0, a1,
c1, v1 and w1 are formulated in Ref. [11]. While solving Eqs. (54) and (55) with respect to A, y, a and k using a
numerical method, these unknown variables are determined and the steady-state solution can be obtained.
Refer to Roy’s paper in Ref. [11] for the detailed description of the computational theory.

The amplitude frequency response and the root mean square error defined by Eq. (51) for the approximate
solutions of the proposed method and Roy’s method are shown in Figs. 9 and 10. The parameters are set to
F ¼ 0.11, c ¼ 0.1, e ¼ 1.0. The computational result of Roy’s method is depicted by the dash-dot line and
indicated by xR. Roy’s method can calculate the approximate solution with high accuracy in the vicinity of the
resonance peak, but the accuracy of the approximate solution for other frequency ranges is very poor. The
approximate solution obtained by the proposed method agrees with the shooting method’s numerical solution.

Roy’s method uses the Jacobian elliptic function that is the exact solution of undamped free vibration for
e ¼ 0 in Eq. (3). For the case where the Jacobian elliptic function is used, modulus k is an important quantity
that characterizes the approximate solution. Therefore, the optimum value for the modulus must be used, and
this is the most difficult and important problem. It is believed that the decrease in computational accuracy of
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Roy’s method is caused by using Eq. (54) that holds only for the case of undamped free vibration. On the
other hand, the proposed method does not use the relationship among amplitude, frequency and modulus of
undamped free vibration shown in Eq. (11). By making use of the pseudo-averaged equation presented in
Section 3, the proposed method can obtain the highly accurate approximate solution for a strongly nonlinear
oscillator defined by Eq. (3) over a wide frequency range.

Finally, the computational speed of the proposed method is compared with that of the shooting method.
A precise comparison of computational speed is difficult, because the calculation procedures for the two
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methods are fundamentally different. Therefore, the computational speeds of the two methods are
approximately estimated.

Both the proposed method and the shooting method must use the Newton–Raphson method to obtain the
solution. In order to roughly estimate the computational speed, the CPU time required for calculating the
iteration process of the Newton–Raphson method was measured. In this process, the numerical integration
based on Simpson’s rule was used for computing H̄1, H̄2 and H̄3 in proposed method, and the RKG method
was applied to solve the fundamental and variational equations in the shooting method simultaneously. It is
well known that CPU times for numerical integration and the RKG method depend on the step-size h ¼ 2p/N,
where N is the number of partitions for one period 2p. Therefore, the above-mentioned CPU times TJ

N of the
proposed method and TS

N of the shooting method were measured for N ¼ 64, 128,y, 2048. In the
measurements of TJ

N and TS
N, the system parameters were set to F ¼ 1.0, c ¼ 0.02, o ¼ 1.0 and e ¼ 1.0.

Fig. 11 shows the CPU time ratio defined by

CN
J ¼

TN
J

T64
J

; CN
S ¼

TN
S

T64
J

. (56)

The symbols ’ and J denote CJ
N and CS

N, respectively. Comparing CJ
N and CS

N, the computational
speed of the proposed method seems to be about 3 or 4 times faster than that of the shooting method for the
same N. A similar property is confirmed for alternate system parameters and for other types of nonlinear
oscillators. Therefore, it might be concluded that the proposed method is also superior to the shooting method
from the viewpoint of computational efficiency.
5.3. Averaging method of cn type for Duffing– van der Pol oscillator with hardening spring

This example computes the periodic solution for a forced Duffing–van der Pol oscillator with hardening
spring (b1 ¼ b3 ¼ 1) using the averaging method of cn type. The equation of van der Pol type was employed
to model the self-excited oscillation circuit [16]. The perturbed function f ðot;x; _xÞ on the right-hand side of
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Eq. (3) is defined as

f ðot;x; _xÞ ¼ F cos ot� cð1� c1x2 þ x4Þ _x, (57)

where F and o are the amplitude and the angular frequency of external force, and c and c1 are the damping
coefficients of the van der Pol oscillator. For this example, the parameters have been set to F ¼ 1.0, c ¼ 0.1,
c1 ¼ 5.0 and e ¼ 1.0.
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Fig. 12 displays the frequency response of the amplitude and clearly shows that the approximate solution
obtained by the proposed method coincides well with the numerical solution obtained by the shooting method.
The Hopf bifurcation point appears at o ¼ 1.688 on right flank of main resonance for both methods. In
addition, the approximate solution calculated by the proposed method is more accurate than the solution
obtained by the conventional averaging method.

5.4. Averaging method of sn type for pendulum oscillator

Next, the averaging method of sn type is applied to a pendulum oscillator. The dimensionless equation of
motion of a forced pendulum oscillator with viscous damping is generally expressed as

€fþ �c _fþ sin f ¼ �T sin ot, (58)

where f is the pendulum’s rotation angle, T and o are the amplitude and the angular frequency of the
harmonically excited torque, and c is the damping coefficient. Eq. (58) can be transformed by scaling variables
f and T according to f ¼

ffiffiffi
6
p

x and T ¼
ffiffiffi
6
p

F . Using this technique, the governing equation becomes

€xþ x� x3 ¼ �f ðot; x; _xÞ, (59)

where the perturbed function f ðot;x; _xÞ is defined by

f ðot;x; _xÞ ¼ F sin ot� c _x�
1

�

X1
n¼3

ð�6Þn�1

ð2n� 1Þ!
x2n�1

" #
(60)

and b1 ¼ 1, b3 ¼ �1 in Eq. (3).
The frequency response of the amplitude is shown in Fig. 13. For this example, the parameters are set to

F ¼ 0:5=
ffiffiffi
6
p
¼ 0:204 . . . ðT ¼ 0:5Þ, c ¼ 0.317 and e ¼ 1.0. The figure indicates that the frequency response

curves obtained by the shooting method separate into upper-left and lower-right branches. The upper-left
branch has a peninsular-like feature hanging down from the upper-left region of the skeleton curve. The
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lower-right branch takes on the well-known primary resonance form. The result obtained by the averaging
method of sn type generates these two branches and corresponds with the solution obtained by the shooting
method. On the other hand, the conventional averaging method generates two resonance branches that
sandwich the skeleton curve. The shapes of the conventional method’s frequency response curves for the
parameter values used in the computation are qualitatively and quantitatively different from those generated
by the shooting method.

Fig. 14 shows a detailed view of the upper-left frequency response curve. When the method I is used for the
stability analysis, the pitchfork bifurcation point for the proposed method appears at (op, xp) ¼ (0.4658,1.168)
in the upper branch. The pitchfork bifurcation point calculated by the shooting method is located at
(op, xp) ¼ (0.4652,1.182). These numerical results are nearly coincident. When the averaging equation
discussed in Section 4.2 is used as the stability criterion, all of the approximate solutions for the upper region
of the upper-left branch take on a peninsular-like form and become stable solutions. In this case, the method
II cannot determine the stability of the secondary unstable region as well as the result of Section 5.2.
5.5. Averaging method of dn type for a Duffing oscillator with snap-through spring and piecewise linear spring

containing a dead zone

This final example calculates the computational results for a Duffing oscillator with a snap-through spring
(b1 ¼ �1, b3 ¼ 1) that contains a piecewise linear spring with a dead zone. The perturbed function f ðot; x; _xÞ
for this example is defined as

f ðot;x; _xÞ ¼ F cos ot� c _x; ðd2oxod1Þ;

f ðot;x; _xÞ ¼ F cos ot� c _x� k1x; ðx4d1Þ;

f ðot;x; _xÞ ¼ F cos ot� c _x� k2x; ðxod2Þ:

9>=
>; (61)
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The periodic solution of the half-swing mode vibrating around the one of the stable equilibrium points
(x ¼ 1) is determined using the averaging method of dn type.

Fig. 15 illustrates the restoring force for a piecewise linear spring containing a dead zone. The parameters
are set to F ¼ 0.1, c ¼ 0.15 and e ¼ 1.0. The amplitude frequency response curves are shown in Fig. 16.
Fig. 16(a) displays the frequency response curve for a normal Duffing oscillator with a snap-through spring
system without a piecewise linear spring (k1 ¼ k2 ¼ 0) and Fig. 16(b) displays that for the same oscillator with
a piecewise linear spring containing a dead zone (k1 ¼ k2 ¼ 0.1, d1 ¼ 1.2, d2 ¼ 0.8). Since the steady-state
solution of these oscillators is a non-odd order solution and the waveform becomes asymmetrical, the vertical
axes of Figs. 16(a) and (b) represent the peak-to-peak amplitude. The generating solution for the half-swing
mode using the conventional averaging method can be expressed as

xt ¼ Rþ At cosðotþ ytÞ; _xt ¼ �Ato sinðotþ ytÞ, (62)

where At ¼ At(t), yt ¼ yt(t) and R is a constant. The shapes of the frequency response curves for the
conventional averaging method are both qualitatively and quantitatively different from those generated by the
shooting method. In addition, the averaging method of dn type calculates the approximate solution with
higher accuracy than the conventional averaging method.

6. Conclusions

An averaging method of elliptic type using the Jacobian elliptic functions is developed as a generating
solution to obtain highly accurate steady-state solutions for strongly nonlinear oscillators with a single degree
of freedom. This method is classified into the averaging method of cn, sn or dn types according to the Jacobian
elliptic function used for the generating solution. The particular method is selected based upon the type of
basic oscillator used, which is determined by b1 and b3 in Eq. (3). The proposed method can be widely applied
to nonlinear oscillators having nonlinear restoring forces in the first- and third-order terms with respect to the
displacement. The function Ciði ¼ 2� 4; 8� 10Þ in Eqs. (34) and (35) is used to determine unknown variables
Ā, ȳ and k̄, which are independent of the perturbed function f ðot;x; _xÞ. These equations can be derived
analytically, as shown in Eqs. (31)–(33). On the other hand, H̄1, H̄2 and H̄3 in Eqs. (34) and (35) are defined by
each system and change depending on the form of the perturbed function f ðot; x; _xÞ. In addition, it is difficult
to analytically calculate H̄1, H̄2 and H̄3 for an arbitrary f ðot; x; _xÞ. Therefore, Simpson’s rule can be employed
for the necessary numerical integration, allowing the proposed method to be applied to many oscillators.

Two types of stability analysis for the approximate solution obtained by the proposed method are also
discussed. One is the method by using the variational equation of the fundamental equation and the other by
using the variational equation of the averaging equation. Though the former is very accurate, the latter is
unable to determine the secondary unstable region caused by a pitchfork and Hopf bifurcation point. The
accuracy of the latter stability analysis is poor even when the approximate solution is obtained with a high
degree of accuracy by the proposed method.

Four examples containing different oscillators were conducted. When the results of the proposed method
were compared to the very accurate numerical solutions calculated by the shooting method, it was confirmed
that the proposed method provides more accurate solutions than those obtained by the conventional
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averaging method that uses trigonometric functions as a generating solution. Moreover, all of the numerical
results agree well with those obtained by the shooting method for moderately large parameter values of the
perturbed function. The averaging method of elliptic type also obtains similar computational accuracy values
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for other oscillators. These results confirm that the proposed method is very effective in analyzing the steady-
state solution of strongly nonlinear oscillators based on the Duffing equation.

Acknowledgment

The authors gratefully acknowledge the support of Grants-in-Aid for the Scientific Research in 2007 from
the Japan Society for the Promotion of Science.
References

[1] N.M. Krylov, N.N. Bogoliubov, Introduction to Nonlinear Mechanics, Princeton University Press, Princeton, 1943.

[2] S. Maezawa, Nonlinear Ordinary Differential Equation, Daiyamondo, 1969, pp. 137–143 (in Japanese).

[3] P.G.D. Barkham, A.C. Soudack, An extension to the method of Kryloff and Bogoliuboff, International Journal of Control 10 (1969)

377–392.

[4] P.A.T. Christopher, An approximate solution to a strongly non-linear, second-order, differential equation, International Journal of

Control 17 (1973) 597–608.

[5] P.A.T. Christopher, A. Brocklehurst, A generalized form of an approximate solution to a strongly non-linear, second-order,

differential equation, International Journal of Control 19 (1974) 831–839.

[6] S.B. Yuste, J.D. Bejarano, Amplitude decay of damped non-linear oscillators studied with Jacobian elliptic function, Journal of Sound

and Vibration 114 (1987) 33–44.

[7] S.B. Yuste, J.D. Bejarano, Extension and improvement to the Krylov–Bogoliubov methods using elliptic functions, International

Journal of Control 49 (1989) 1127–1141.

[8] S.B. Yuste, J.D. Bejarano, Improvement of a Krylov–Bogoliubov method that uses Jacobi elliptic functions, Journal of Sound and

Vibration 139 (1990) 151–163.

[9] F.F. Cap, Averaging method for the solution of non-linear differential equations with periodic non-harmonic solutions, International

Journal of Non-Linear Mechanics 9 (1974) 441–450.

[10] V.T. Coppola, R.H. Rand, Averaging using elliptic functions: approximation of limit cycles, Acta Mechanica 81 (1990) 125–142.

[11] R.V. Roy, Averaging method for strongly non-linear oscillators with periodic excitations, International Journal of Non-Linear

Mechanics 29 (1994) 737–753.

[12] T. Kondou, K. Yagasaki, Some resent topics on nonlinear vibration and chaos, Transactions of the Japan Society of Mechanical

Engineers 61C (1995) 746–751 (in Japanese).

[13] N.W. McLachalan, Ordinary Nonlinear Differential Equations, Oxford Press, Oxford, 1956, p. 39.

[14] H. Tamura, Y. Matsuda, Exact solutions of the autonomous Duffing equation and their computation (Expression of solutions and

trial calculation of a characteristic parameter), JSME International Journal 30 (1987) 482–490.

[15] P.F. Byrd, M.D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer, New York, 1971.

[16] Y. Ishibashi, Nonlinear Circuit, Kyoritsu Shuppan, 1976, p. 141 (in Japanese).


	Improvement to the averaging method using the Jacobian elliptic function
	Introduction
	Preparative discussions for formulation of the method
	Fundamental equation
	Differential formulae for the Jacobian elliptic function
	Exact solution of the undamped free vibration of the Duffing equation

	Averaging method of elliptic type
	Approximate solution assumption for a perturbed system
	Differential operator with respect to time
	Derivation of the pseudo-averaged equations
	Computation of the periodic solution
	Relationship with the conventional averaging method
	Ineffective application

	Stability analysis
	Method using the variational equation of the fundamental equation
	Method using the variational equation of the averaging equation

	Computational results and discussion
	Numerical calculation conditions
	Averaging method of cn type for a Duffing oscillator with hardening spring
	Averaging method of cn type for Duffing-van der Pol oscillator with hardening spring
	Averaging method of sn type for pendulum oscillator
	Averaging method of dn type for a Duffing oscillator with snap-through spring and piecewise linear spring containing a dead zone

	Conclusions
	Acknowledgment
	References


